A Sparse Nonlinear Classifier Design Using AUC Optimization
نویسندگان
چکیده
AUC (Area under the ROC curve) is an important performance measure for applications where the data is highly imbalanced. Learning to maximize AUC performance is thus an important research problem. Using a max-margin based surrogate loss function, AUC optimization problem can be approximated as a pairwise rankSVM learning problem. Batch learning methods for solving the kernelized version of this problem suffer from scalability and may not result in sparse classifiers. Recent years have witnessed an increased interest in the development of online or single-pass online learning algorithms that design a classifier by maximizing the AUC performance. The AUC performance of nonlinear classifiers, designed using online methods, is not comparable with that of nonlinear classifiers designed using batch learning algorithms on many real-world datasets. Motivated by these observations, we design a scalable algorithm for maximizing AUC performance by greedily adding the required number of basis functions into the classifier model. The resulting sparse classifiers perform faster inference. Our experimental results show that the level of sparsity achievable can be order of magnitude smaller than the Kernel RankSVM model without affecting the AUC performance
منابع مشابه
A New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملGene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملVision Recognition using Discriminant Sparse Optimization Learning
To better select the correct training sample and obtain the robust representation of the query sample, this paper proposes a discriminant-based sparse optimization learning model. This learning model integrates discriminant and sparsity together. Based on this model, we then propose a classifier called locality-based discriminant sparse representation (LDSR). Because discriminant can help to in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017